Nicolas Pilon

Liens d'intérêt
Informations générales

Cheminement académique

-Professeur titulaire, Département des sciences biologiques, UQAM, 2018-auj.
-Professeur agrégé, Département des sciences biologiques, UQAM, 2014-2018.
-Professeur adjoint, Département des sciences biologiques, UQAM, 2012-2014
-Professeur sous-octroi, Département des sciences biologiques, UQAM, 2008-2012
-Associé de recherche, Département de biomédecine vétérinaire, Université de Montréal, 2005-2008
-Stage postdoctoral, Institut de recherches cliniques de Montréal, 2001-2005
-PhD en biologie moléculaire, Université de Montréal, 1995-2001
-BSc en biochimie, Université de Sherbrooke, 1992-1995

Unités de recherche

Projets de recherche et/ou de recherche-création en cours

  • Elucidating the multiple nuclear roles of the CHARGE syndrome-associated protein FAM172A (#PJT- 191684)

    Projet subventionné par les IRSC ($975 375; 2024-2029)

  • Treatment of Hirschsprung disease by rectal administration of neurotrophic factors (SYN-329)

    Projet subventionné par le CQDM et Neurenati Therapeutics ($1 578 947; 2023-2026)

  • Mechanism of GDNF-based treatment of Hirschsprung disease (#PJT-180290)

    Projet subventionné par les IRSC ($1 005 975; 2022-2027)

  • Defining non-genetic mechanisms that prevent death in a Hirschsprung disease mouse model (#1R01DK129691-01)

    Projet subventionné par les NIH ($1 665 985; 2021-2025)

  • Development of the enteric nervous system (#RGPIN-2019-07076)

    Projet subventionné par le CRSNG ($252 000; 2019-2025)

Partenaires (organismes, entreprises)

  • Instituts de Recherches en Santé du Canada (IRSC); Conseil de recherche en sciences naturelles et génie du Canada (CRSNG); Neurenati Therapeutics; Consortium québécois de découverte du médicament (CQDM); Axelys; Montreal InVivo; Fondation canadienne pour l'innovation (FCI); Fonds pour la recherche en santé du Québec (FRSQ); RARE.Qc; Fondation du Grand Défi Pierre Lavoie; Regroupement Québécois des Maladies Orphelines (RQMO);

Affiliations externes principales

  • Co-Directeur, Réseau RARE.Qc du FRQS
  • Professeur associé, Département de pédiatrie, Faculté de médecine, Université de Montréal
Enseignement
Communications
Participation à l’édition d’une revue
Distinctions
  • Prix de la recherche 2022 - Volet Expert, Faculté des scineces de l'UQAM
  • Chaire de recherche UQAM sur les maladies génétiques rares
  • Chercheur-Boursier Sénior, Fonds de recherche du Québec - Santé (FRQS)
  • Chercheur-boursier Junior 2, Fonds de recherche du Québec - Santé (FRQS)
  • Prix de la recherche 2013 - Volet relève, Faculté des sciences de l'UQAM
  • Chercheur-boursier Junior 1, Fonds de recherche du Québec - Santé (FRQS)
Services à la collectivité

-Directeur général du CERMO-FC, 2018-auj
-Membre du comité d'évaluation Génétique des Instituts de recherche en santé du Canada (IRSC)- Volet Projet, 2017-auj

Directions de thèses et mémoires

Thèses de doctorat
Mémoires
Autres directions et supervisions
  • Nguyen, Chloé MA. (2016). La perturbation du locus Nr2f1-K12 entraine une différenciation gliale précoce dans un nouveau modèle murin de mégacôlon aganglionnaire. (Mémoire de maîtrise). Université de Montréal Laberge-Perrault, Emilie (2016) Cdx-mediated co-integration of Wnt and BMP signals on a single Pax3 neural crest enhancer.(Mémoire de maîtrise). Université de Montréal Charrier, Baptiste (2018) Analyse du rôle de la paire de gènes A830082k12Rik/Nr2f1 dans la gilogenèse entérique. (Mémoire de maîtrise). Université de Montréal Leduc, Elizabeth (2019) Anomalies oculaires chez le modèle murin C57Bl/6Toupee : Implications sur la variabilité phénotypique du syndrome CHARGE et sur le rôle de FAM72A dans le développement oculaire. (Mémoire de maîtrise). Université de Montréal Righini-Grunder, Franziska (2020) L'évolution à long terme, le fonctionnement de l'intestin et la qualité de vie des patients affectés de la maladie de Hirschsprung; étude prospective cas-témoins. (Mémoire de maîtrise). Université de Montréal

Publications

Articles scientifiques
  • Breuer, M., Rummler, M., Singh, J., Maher, S., Zaouter, C., Jamadagni, P., Pilon, N., Willie, B.M. et Patten, S.A. (2024). CHD7 regulates craniofacial cartilage development via controlling HTR2B expression. Journal of Bone and Mineral Research, 39(4), 498–512. http://dx.doi.org/10.1093/jbmr/zjae024.
  • Lassoued, N., Yero, A., Jenabian, M.-A., Soret, R. et Pilon, N. (2024). Efficient enzyme-free method to assess the development and maturation of the innate and adaptive immune systems in the mouse colon. Scientific Reports, 14(1), article 11063. http://dx.doi.org/10.1038/s41598-024-61834-5.
  • Lefèvre, M.A., Soret, R. et Pilon, N. (2023). Harnessing the power of enteric glial cells’ plasticity and multipotency for advancing regenerative medicine. International Journal of Molecular Sciences, 24(15), article 12475. http://dx.doi.org/10.3390/ijms241512475.
  • Sallis, S., Bérubé-Simard, F.A., Grondin, B., Leduc, E., Azouz, F., Bélanger, C. et Pilon, N. (2023). The CHARGE syndrome-associated protein FAM172A controls AGO2 nuclear import. Life Science Alliance, 6(8), article e202302133. http://dx.doi.org/10.26508/lsa.202302133.
  • Bélanger, C., Cardinal, T., Leduc, E., Viger, R.S. et Pilon, N. (2022). CHARGE syndrome-associated proteins FAM172A and CHD7 influence male sex determination and differentiation through transcriptional and alternative splicing mechanisms. The FASEB Journal, 36(3), article e22176. http://dx.doi.org/10.1096/fj.202100837RR.
  • Pilon, N. (2022). Neural crest cell development in health and disease. International Journal of Molecular Sciences, 23(22), article 13684. http://dx.doi.org/10.3390/ijms232213684.
  • Bonnamour, G., Charrier, B., Sallis, S., Leduc, E. et Pilon, N. (2022). NR2F1 regulates a Schwann cell precursor-vs-melanocyte cell fate switch in a mouse model of Waardenburg syndrome type IV. Pigment Cell & Melanoma Research, 35(5), 506–516. http://dx.doi.org/10.1111/pcmr.13054.
  • Bonnamour, G., Soret, R. et Pilon, N. (2021). Dhh-expressing Schwann cell precursors contribute to skin and cochlear melanocytes, but not to vestibular melanocytes. Pigment Cell & Melanoma Research, 34(3), 648–654. http://dx.doi.org/10.1111/pcmr.12938.
  • Soret, R., Lassoued, N., Bonnamour, G., Bernas, G., Barbe, A., Pelletier, M., Aichi, M. et Pilon, N. (2021). Genetic background influences severity of colonic aganglionosis and response to GDNF enemas in the Holstein mouse model of Hirschsprung disease. International Journal of Molecular Sciences, 22(23), article 13140. http://dx.doi.org/10.3390/ijms222313140.
  • Pilon, N. (2021). Treatment and prevention of neurocristopathies. Trends in Molecular Medicine, 27(5), 451–468. http://dx.doi.org/10.1016/j.molmed.2021.01.009.
  • Soret, R., Schneider, S., Bernas, G., Christophers, B., Souchkova, O., Charrier, B., Righini-Grunder, F., Aspirot, A., Landry, M., Kembel, S.W., Faure, C., Heuckeroth, R.O. et Pilon, N. (2020). Glial Cell Derived Neurotrophic Factor Induces Enteric Neurogenesis and Improves Colon Structure and Function in Mouse Models of Hirschsprung Disease. Gastroenterology, 159(5), 1824–1838.e17.. http://dx.doi.org/10.1053/j.gastro.2020.07.018.
  • Cardinal, T., Bergeron, K.F., Soret, R., Souchkova, O., Faure, C., Guillon, A. et Pilon, N. (2020). Male-biased aganglionic megacolon in the TashT mouse model of Hirschsprung disease involves upregulation of p53 protein activity and Ddx3y gene expression. PLOS Genetics, 16(9), article e1009008. http://dx.doi.org/10.1371/journal.pgen.1009008.
  • Tchoumi Nerée, A., Soret, R., Marcocci, L., Pietrangeli, P., Pilon, N. et Mateescu, M.A. (2020). Vegetal Diamine Oxidase alleviates histamine-induced contraction of colonic muscles. Scientific Reports, 10(1), article 21563. http://dx.doi.org/10.1038/s41598-020-78134-3.
  • Touré, A.M., Landry, M., Souchkova, O., Kembel, S.W. et Pilon, N. (2019). Gut microbiota-mediated Gene-Environment interaction in the TashT mouse model of Hirschsprung disease. Scientific Reports, 9(1), article 492. http://dx.doi.org/10.1038/s41598-018-36967-z.
  • Bérubé-Simard, F.A. et Pilon, N. (2019). Molecular dissection of CHARGE syndrome highlights the vulnerability of neural crest cells to problems with alternative splicing and other transcription-related processes. Transcription, 10(1), 21–28. http://dx.doi.org/10.1080/21541264.2018.1521213.
  • Bergeron, F., Boulende-Sabm A., Bouchard, M.F., Taniguchi, H., Souchkova, O., Brousseau, C., Tremblay, J.J., Pilon, N. et Viger, R.S. (2019). Phosphorylation of GATA4 serine 105 but not serine 261 is required for testosterone production in the male mouse. Andrology, 7(3), 357–372. http://dx.doi.org/10.1111/andr.12601.
  • Bélanger, C., Bérubé-Simard, F.A., Leduc, E., Bernas, G., Campeau, P.M., Lalani, S.R., Martin, D.M., Bielas, S., Moccia A., Srivastava, A., Silversides, D.W. et Pilon, N. (2018). Dysregulation of co-transcriptional alternative splicing underlies CHARGE syndrome. Proceedings of the National Academy of Sciences of the United States of America, 115(4), E620–E629. http://dx.doi.org/10.1073/pnas.1715378115.
  • Farrell, S.A., Sodhi, S., Marshall, C.R., Paton, T., Guerin, A., Scherer, S.W., Bérubé-Simard, F.A. et Pilon, N. (2017). HLX is a candidate gene for congenital diaphragmatic hernia, short bowel and asplenia in humans. American Journal of Medical Genetics, Part A, 173(11), 3070–3074. http://dx.doi.org/10.1002/ajmg.a.38354.
  • Charrier, B. et Pilon, N. (2017). Toward a better understanding of enteric gliogenesis. Neurogenesis, 4(1), e1293958. http://dx.doi.org/10.1080/23262133.2017.1293958.
  • Sanchez-Ferras, O., Bernas, G., Farnos-Villar, O., Touré, A.M., Souchkova, O. et Pilon, N. (2016). A direct role for murine Caudal-related homeobox (Cdx) proteins in the trunk neural crest-gene regulatory network. Development, 143(8), 1363–1374. http://dx.doi.org/10.1242/dev.132159.
  • Soret, R. et Pilon, N. (2016). Analysis of enteric neural crest cell migration using heterotopic grafts of embryonic guts. Bio-Protocols, 6(17), e1924. http://dx.doi.org/10.21769/BioProtoc.1924.
  • Touré, A.M., Charrier, B. et Pilon, N. (2016). Male-specific colon motility dysfunction in the TashT mouse line. Neurogastroenterology and Motility, 28(10), 1494–1507. http://dx.doi.org/10.1111/nmo.12847.
  • Pilon, N. (2016). Pigmentation-based insertional mutagenesis is a simple and potent screening approach for identifying neurocristopathy-associated genes in mice. Rare Diseases, 4(1), e1156287. http://dx.doi.org/10.1080/21675511.2016.1156287.
  • Bergeron, K.F., Nguyen, C., Cardinal, T., Charrier, B., Silversides, D.W. et Pilon, N. (2016). Upregulation of the Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of Waardenburg syndrome type 4. Disease Models and Mechanisms, 9(11), 1283–1293. http://dx.doi.org/10.1242/dmm.026773.
  • Soret, R., Mennetrey, M., Bergeron, K. F., Dariel, A., Neunlist, M., Grunder, F., Faure, C., Silversides, D.W. et Pilon, N. (2015). A collagen VI-dependent pathogenic mechanism for Hirschsprung’s disease. The Journal of Clinical Investigation, 125(12), 4483–4496. http://dx.doi.org/10.1172/JCI83178.
  • Bergeron, K.-F., Cardinal, T., Touré, A.M., Béland, M., Raiwet, D.R., Silversides, D.W. et Pilon N. (2015). Male-biased aganglionic megacolon in the TashT mouse line due to perturbation of silencer elements in a large gene desert of chromosome 10. PLoS Genetics, 11(3), e1005093. http://dx.doi.org/10.1371/journal.pgen.1005093.
  • Sanchez-Ferras, O., Bernas, G., Laberge-Perrault, E. et Pilon, N. (2014). Induction and dorsal restriction of Paired-box 3 (Pax3) gene expression in the caudal neuroectoderm is mediated by integration of multiple pathways on a short neural crest enhancer. Biochimica et biophysica acta, 1839(7), 546–558. http://dx.doi.org/10.1016/j.bbagrm.2014.04.023.
  • Bergeron, K.-F., Cardinal, T. et Pilon, N. (2013). A quantitative cell migration assay for murine enteric neural progenitors. Journal of visualized experiments: JoVE, (79). http://dx.doi.org/10.3791/50709.
  • Coutaud, B. et Pilon, N. (2013). Characterization of a novel transgenic mouse line expressing Cre recombinase under the control of the Cdx2 neural specific enhancer. Genesis, 51(11), 777–784. http://dx.doi.org/10.1002/dvg.22421.
  • Bergeron, K.-F., Silversides, D.W. et Pilon, N. (2013). The developmental genetics of Hirschsprung's disease. Clinical genetics, 83(1), 15–22. http://dx.doi.org/10.1111/cge.12032.
  • Sanchez-Ferras, O., Coutaud, B., Djavanbakht Samani, T., Tremblay, I., Souchkova, O. et Pilon, N. (2012). Caudal-related homeobox (Cdx) protein-dependent integration of canonical Wnt signaling on paired-box 3 (Pax3) neural crest enhancer. The Journal of biological chemistry, 287(20), 16623–16635. http://dx.doi.org/10.1074/jbc.M112.356394.
  • Silversides, D.W., Raiwet, D.L., Souchkova, O., Viger, R.S. et Pilon, N. (2012). Transgenic mouse analysis of Sry expression during the pre- and peri-implantation stage. Developmental dynamics: an official publication of the American Association of Anatomists, 241(7), 1192–1204. http://dx.doi.org/10.1002/dvdy.23798.
  • Boulende, A., Bouchard, M.F., Beland, M., Souchkova, O., Prud'homme, B., Viger, R. et Pilon, N. (2011). An E-box element in the proximal Gata4 promoter is required for Gata4 expression in vivo. PLOS ONE, 6(12), e29038. http://dx.doi.org/10.1371/journal.pone.0029038.
  • Savory, J.G.A., Pilon, N., Grainger, S., Sylvestre, J.-R., Béland, M., Houle, M., Oh, K. et Lohnes, D. (2009). Cdx1 and Cdx2 are functionally equivalent in vertebral patterning. Developmental biology, 330(1), 114–122. http://dx.doi.org/10.1016/j.ydbio.2009.03.016.
  • Pilon, N., Raiwet, D., Viger, R.S. et Silversides, D.W. (2008). Novel pre- and post-gastrulation expression of Gata4 within cells of the inner cell mass and migratory neural crest cells. Developmental dynamics : an official publication of the American Association of Anatomists, 237(4), 1133–1143. http://dx.doi.org/10.1002/dvdy.21496.
  • Cory, A.T., Boyer, A., Pilon, N., Lussier, J.G. et Silversides, D.W. (2007). Presumptive pre-Sertoli cells express genes involved in cell proliferation and cell signalling during a critical window in early testis differentiation. Molecular reproduction and development, 74(12), 1491–1504. http://dx.doi.org/10.1002/mrd.20722.
  • Mazaud Guittot, S., Tétu, A., Legault, E., Pilon, N., Silversides, D.W. et Viger, R.S. (2007). The proximal Gata4 promoter directs reporter gene expression to sertoli cells during mouse gonadal development. Biology of reproduction, 76(1), 85–95. http://dx.doi.org/10.1095/biolreprod.106.055137.
  • Pilon, N., Oh, K., Sylvestre, J.-R., Savory, J.G.A. et Lohnes, D. (2007). Wnt signaling is a key mediator of Cdx1 expression in vivo. Development, 134(12), 2315–2323. http://dx.doi.org/10.1242/dev.001206.
  • Pilon, N., Oh, K., Sylvestre, J.-R., Bouchard, N., Savory, J. et Lohnes, D. (2006). Cdx4 is a direct target of the canonical Wnt pathway. Developmental biology, 289(1), 55–63. http://dx.doi.org/10.1016/j.ydbio.2005.10.005.
  • Boyer, A., Pilon, N., Raiwet, D.L., Lussier, J.G. et Silversides, D.W. (2006). Human and pig SRY 5' flanking sequences can direct reporter transgene expression to the genital ridge and to migrating neural crest cells. Developmental dynamics: an official publication of the American Association of Anatomists, 235(3), 623–632. http://dx.doi.org/10.1002/dvdy.20670.
  • Béland, M., Pilon, N., Houle, M., Oh, K., Sylvestre, J.-R., Prinos, P. et Lohnes, D. (2004). Cdx1 autoregulation is governed by a novel Cdx1-LEF1 transcription complex. Molecular and cellular biology, 24(11), 5028–5038. http://dx.doi.org/10.1128/MCB.24.11.5028-5038.2004.
  • Pilon, N., Daneau, I., Paradis, V., Hamel, F., Lussier, J.G., Viger, R.S. et Silversides, D.W. (2003). Porcine SRY promoter is a target for steroidogenic factor 1. Biology of reproduction, 68(4), 1098–1106. http://dx.doi.org/10.1095/biolreprod.102.010884.
  • Daneau, I., Pilon, N., Boyer, A., Behdjani, R., Overbeek, P.A., Viger, R., Lussier, J. et Silversides, D.W. (2002). The porcine SRY promoter is transactivated within a male genital ridge environment. Genesis, 33(4), 170–180. http://dx.doi.org/10.1002/gene.10106.
  • Silversides, D.W., Pilon, N., Behdjani, R., Boyer, A., Daneau, I. et Lussier, J. (2001). Genetic manipulation of sex differentiation and phenotype in domestic animals. Theriogenology, 55(1), 51–63. http://dx.doi.org/10.1016/S0093-691X(00)00445-3.
  • Boerboom, D., Pilon, N., Behdjani, R., Silversides, D.W. et Sirois, J. (2000). Expression and regulation of transcripts encoding two members of the NR5A nuclear receptor subfamily of orphan nuclear receptors, steroidogenic factor-1 and NR5A2, in equine ovarian cells during the ovulatory process. Endocrinology, 141(12), 4647–4656. http://dx.doi.org/10.1210/endo.141.12.7808.
  • Pilon, N., Behdjani, R., Daneau, I., Lussier, J.G. et Silversides, D.W. (1998). Porcine steroidogenic factor-1 (SF-1) gene expression and analysis of embryonic pig gonads during sexual differentiation. Endocrinology, 139(9), 3803–3812. http://dx.doi.org/10.1210/endo.139.9.6193.
  • Pilon, N., Daneau, I., Brisson, C., Ethier, J.F., Lussier, J.G. et Silversides, D.W. (1997). Porcine and bovine steroidogenic acute regulatory protein (StAR) gene expression during gestation. Endocrinology, 138(3), 1085–1091. http://dx.doi.org/10.1210/endo.138.3.5003.
  • Bouffard, P., Gagnon, C., Cloutier, D., et al. (1995). Analysis of T cell receptor beta chain expression by isoelectric focusing following gene amplification and in vitro translation. Journal of immunological methods, 187(1), 9–21. http://dx.doi.org/10.1016/0022-1759(95)00161-3.

Intérêts de recherche

Notre laboratoire s’intéresse principalement à la génétique moléculaire des neurocristopathies, un groupe de maladies génétiques rares qui ont en commun un développement anormal des cellules de la crête neurale. Cette population de cellules souches engendre une multitude de types cellulaires différents incluant : neurones et glies périphériques, mélanocytes, ostéoblastes et chondrocytes craniofaciaux ou encore certaines cellules spécialisées du cœur, de l’oeil et de l’oreille interne. Nous utilisons la souris comme modèle d’étude afin de décortiquer les mécanismes cellulaires et moléculaires contrôlant la formation et le destin des cellules de la crête neurale au cours du développement embryonnaire normal et pathologique. La majorité des projets en cours découle d'un criblage génétique par mutation insertionnelle et implique l’utilisation d’un large éventail de techniques de pointe en biologie moléculaire et cellulaire ainsi que d’approches ex vivo et in vivo. Parmi les neurocristopathies actuellement ciblées par nos travaux, on compte la maladie de Hirschsprung (mégacôlon aganglionnaire), le syndrome de Waardenburg ainsi que le syndrome CHARGE. Afin de s’assurer que nos découvertes aient un impact réel sur l’amélioration de la prise en charge et de la qualité de vie des  enfants atteints de ses graves maladies, nous faisons également équipe avec plusieurs chercheurs-cliniciens de divers centres hospitaliers du Québec et d’ailleurs.

 

Département des sciences biologiques

Le Département des sciences biologiques de l’UQAM est l’un des départements les plus dynamiques au Canada, profitant d’un des plus haut taux de subventions de recherche. La plupart de ses chercheurs sont regroupés au sein d’équipes de recherche de pointe en écologie, santé environnementale et toxicologie, et biotechnologies.

Suivez-nous

Coordonnées

Département des sciences biologiques
Local SB-R860
141, Avenue du Président-Kennedy
Montréal (Québec) H2X 1Y4