Mohammad-Ali Jenabian

Professeur

Photo de Mohammad-Ali Jenabian
Téléphone : (514) 987-3000 poste 6794
Local : SB-3385
Langues : Français, Anglais, Persan
Liens d'intérêt
Informations générales

Cheminement académique

Depuis Juin 2018: Professeur Agregé, Immunologie et Virologie, Département des Sciences Biologiques, UQAM, Montréal, Québec, Canada.

2014-2018: Professeur Adjoint, Immunologie et Virologie, Département des Sciences Biologiques, UQAM, Montréal, Québec, Canada.

2011-2014: Chercheur Postdoctoral, Immunologie Clinique, Institut de recherche du Centre universitaire de santé McGill, Université McGill, Montréal, Québec, Canada.

2009-2011: Chercheur Postdoctoral, Immunologie Fondamentale, Institut Mondor de Recherche Biomédicale (INSERM U955), Université Paris-Est Créteil (Paris XII), Paris, France.

2009: Docteur ès Sciences (Ph.D.), Virologie, Centre de Recherche Biomédicale des Cordeliers (INSERM U743) et Hôpital Européen Georges-Pompidou, Université Pierre et Marie Curie (Paris VI), Paris, France.

2003: Docteur en Médicine Vétérinaire (D.V.M.), Faculté de Médicine Vétérinaire, Université de Karaj, Karaj, Iran.

Unités de recherche

  • Centre de recherches biomédicales (BIOMED)

Partenaires (organismes, entreprises)

  • Membre du comité de direction, Réseau Sida et Maladies Infectieuses, Le Fonds de recherche du Québec - Santé (FRQ-S)
  • Membre régulier, Réseau de Thérapie Cellulaire et Tissulaire, (ThéCell), Le Fonds de recherche du Québec - Santé (FRQ-S)
  • Membre régulier, Réseau Canadien pour les essais VIH des IRSCs (CTN)
  • Co-chercheur, Consortium canadien de recherche sur la guérison du VIH (CanCURE)
  • Membre régulier, Réseau intersectoriel de recherche en santé de l'Université du Québec(RISUQ)
  • Membre régulier, Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC)
  • Membre associé, Regroupement stratégique FRQ-NT, centre de recherche en infectiologie porcine et avicole (CRIPA)

Affiliations externes principales

Enseignement
Distinctions
Services à la collectivité

- Membre, Comité institutionnel de protection des animaux (CIPA)
- Délégué universitaire de l'UQAM aux instituts de recherche en santé du Canada (IRSCs)

Directions de thèses et mémoires

Mémoires
  • Swaminathan, Sharada (2019) Development of Thymic Regulatory T Cells During Human Immunodeficiency Virus (HIV) Infection (Développement de lymphocytes T régulateurs thymiques pendant une infection par le virus de l'immunodéficience humaine (VIH)). (Mémoire de maîtrise). Université du Québec à Montréal.

Publications

Articles scientifiques
  • Iannello, A., Samarani, S., Allam, O., et al. (2017). A potentially protective role of IL-18 Binding Protein in HIV-infected Long-Term Non-Progressors. Cytokine, 90, 96–99. http://dx.doi.org/10.1016/j.cyto.2016.10.018.
  • Allam, O., Samarani, S., Jenabian, M.-A., et al. (2017). Differential synthesis and release of IL-18 and IL-18 Binding Protein from human platelets and their implications for HIV infection. Cytokine, 90, 144–154. http://dx.doi.org/10.1016/j.cyto.2016.10.016.
  • Mossoro-Kpinde, C.D., Mboumba Bouassa, R.-S., Jenabian, M.-A., et al. (2016). Analytical Performances of Human Immunodeficiency Virus Type 1 RNA-Based Amplix® Real-Time PCR Platform for HIV-1 RNA Quantification. AIDS Research and Treatment, 2016, Article ID 7954810. http://dx.doi.org/10.1155/2016/7954810.
  • Huang, Y., Hoque, M.T., Jenabian, M.-A., et al. (2016). Antiretroviral drug transporters and metabolic enzymes in human testicular tissue: potential contribution to HIV-1 sanctuary site. Journal of Antimicrobial Chemotherapy, 71(7), 1954–1965. http://dx.doi.org/10.1093/jac/dkw046.
  • Ahmad, A., Mehraj, V., Jenabian, M.-A., Samarani, S., Tremblay, C. et Routy, J.-P. (2016). Combination antiretroviral therapy and indoleamine 2,3-dioxygenase in HIV infections: challenges and new opportunities. AIDS, 30(11), 1839–1841. http://dx.doi.org/10.1097/QAD.0000000000001168.
  • Aounallah, M., Dagenais-Lussier, X., El-Far, M., et al. (2016). Current topics in HIV pathogenesis, part 2: Inflammation drives a Warburg-like effect on the metabolism of HIV-infected subjects. Cytokine & Growth Factor Reviews, 28, 1–10. http://dx.doi.org/10.1016/j.cytogfr.2016.01.001.
  • Mossoro-Kpinde, C.D., Jenabian, M.-A., Gody, J.C., et al. (2016). Evaluation of the Upgraded Version 2.0 of the Roche COBAS® AmpliPrep/COBAS® TaqMan HIV-1 Qualitative Assay in Central African Children. Open AIDS Journal, 10, 158–163. http://dx.doi.org/10.2174/1874613601610010158.
  • Samarani, S., Allam, O., Sagala, P., et al. (2016). Imbalanced production of IL-18 and its antagonist in human diseases, and its implications for HIV-1 infection. Cytokine, 82, 38–51. http://dx.doi.org/10.1016/j.cyto.2016.01.006.
  • Jenabian, M.-A., Costiniuk, C.T., Mehraj, V., et al. (2016). Immune tolerance properties of the testicular tissue as a viral sanctuary site in ART-treated HIV-infected adults. AIDS, 30(18), 2777–2786. http://dx.doi.org/10.1097/QAD.0000000000001282.
  • Jenabian, M.-A., Mehraj, V., Costiniuk, C.T., et al. (2016). Influence of Hepatitis C Virus Sustained Virological Response on Immunosuppressive Tryptophan Catabolism in ART-Treated HIV/HCV Coinfected Patients. Journal of Acquired Immune Deficiency Syndromes, 71(3), 254–262. http://dx.doi.org/10.1097/QAI.0000000000000859.
  • Wacleche, V.S., Goulet, J.-P., Gosselin, A., et al. (2016). New insights into the heterogeneity of Th17 subsets contributing to HIV-1 persistence during antiretroviral therapy. Retrovirology, 13(59). http://dx.doi.org/10.1186/s12977-016-0293-6.
  • Mehraj, V., Jenabian, M.-A., Ponte, R., et al. (2016). The plasma levels of soluble ST2 as a marker of gut mucosal damage in early HIV infection. AIDS, 30(10), 1617–1627. http://dx.doi.org/10.1097/QAD.0000000000001105.
  • Routy, J.-P., Angel, J., Patel, M., et al. (2015). Assessment of chloroquine as a modulator of immune activation to improve CD4 recovery in immune nonresponding HIV-infected patients receiving antiretroviral therapy. HIV Medicine, 16(1), 48–56. http://dx.doi.org/10.1111/hiv.12171.
  • Routy, J.-P., Mehraj, V., Vyboh, K., Cao, W., Kema, I. et Jenabian, M.-A. (2015). Clinical Relevance of Kynurenine Pathway in HIV/AIDS: An Immune Checkpoint at the Crossroads of Metabolism and Inflammation. AIDS Reviews, 17(2), 96–106. Récupéré de http://www.aidsreviews.com/files/2015_17_2_096-106.pdf.
  • Hubert, A., Subra, C., Jenabian, M.-A., et al. (2015). Elevated Abundance, Size, and MicroRNA Content of Plasma Extracellular Vesicles in Viremic HIV-1+ Patients: Correlations With Known Markers of Disease Progression. Journal of Acquired Immune Deficiency Syndromes, 70(3), 219–227. http://dx.doi.org/10.1097/QAI.0000000000000756.
  • Vyboh, K., Jenabian, M.-A., Mehraj, V. et Routy, J.-P. (2015). HIV and the gut microbiota, partners in crime: breaking the vicious cycle to unearth new therapeutic targets. Journal of Immunology Research, 2015, Article ID 614127. http://dx.doi.org/10.1155/2015/614127.
  • Costiniuk, C.T. et Jenabian, M.-A. (2015). HIV reservoir dynamics in the face of highly active antiretroviral therapy. AIDS Patient Care and STDs, 29(2), 55–68. http://dx.doi.org/10.1089/apc.2014.0173.
  • Cleret-Buhot, A., Zhang, Y., Planas, D., et al. (2015). Identification of novel HIV-1 dependency factors in primary CCR4(+)CCR6(+)Th17 cells via a genome-wide transcriptional approach. Retrovirology, 12(102). http://dx.doi.org/10.1186/s12977-015-0226-9.
  • Jenabian, M.-A., El-Far, M., Vyboh, K., et al. (2015). Immunosuppressive Tryptophan Catabolism and Gut Mucosal Dysfunction Following Early HIV Infection. The Journal of Infectious Diseases, 212(3), 355–366. http://dx.doi.org/10.1093/infdis/jiv037.
  • DaFonseca, S., Niessl, J., Pouvreau, S., et al. (2015). Impaired Th17 polarization of phenotypically naive CD4(+) T-cells during chronic HIV-1 infection and potential restoration with early ART. Retrovirology, 12(38). http://dx.doi.org/10.1186/s12977-015-0164-6.
  • Jenabian, M.-A., Talla, F., Talla, P., et al. (2015). Pitfalls of antiretroviral drug resistance genotyping of HIV-1 Group M and Group N from Cameroon by sequenced-based assays. Nigerian Medical Journal, 56(6), 420–424. http://dx.doi.org/10.4103/0300-1652.171613.
  • Trottier, B., Galanakis, C., Longpré, D., et al. (2015). Removing inactive NRTIs in a salvage regimen is safe, maintains virological suppression and reduces treatment costs: results from the VERITAS study (TMC114HIV4054). HIV Clinical Trials, 16(3), 111–116. http://dx.doi.org/10.1179/1528433614Z.0000000015.
  • Jenabian, M.-A., Costiniuk, C.T., Mboumba Bouassa, R.S., Chapdeleine Mekue Mouafo, L., Brogan, T.V. et Bélec, L. (2015). Tackling virological failure in HIV-infected children living in Africa. Expert Review of Anti-infective Therapy, 13(10), 1213–1223. http://dx.doi.org/10.1586/14787210.2015.1068117.
  • LeGoff, J., Roques, P., Jenabian, M.-A., et al. (2015). Variability of human immunodeficiency virus-1 in the female genital reservoir during genital reactivation of herpes simplex virus type 2. Clinical Microbiology and Infection, 21(9), 873.e1–873.e9. http://dx.doi.org/10.1016/j.cmi.2015.05.014.
  • Costiniuk, C.T. et Jenabian, M.-A. (2014). Cell-to-cell transfer of HIV infection: implications for HIV viral persistence. The Journal of General Virology, 95(Pt 11), 2346–2355. http://dx.doi.org/10.1099/vir.0.069641-0.
  • Carriere, M., Lacabaratz, C., Kok, A., et al. (2014). HIV "elite controllers" are characterized by a high frequency of memory CD8+ CD73+ T cells involved in the antigen-specific CD8+ T-cell response. The Journal of Infectious Diseases, 209(9), 1321–1330. http://dx.doi.org/10.1093/infdis/jit643.
  • Mehraj, V., Jenabian, M.-A., Vyboh, K. et Routy, J.-P. (2014). Immune Suppression by Myeloid Cells in HIV Infection: New Targets for Immunotherapy. Open AIDS Journal, 8, 66–78. http://dx.doi.org/10.2174/1874613601408010066.
  • Costiniuk, C.T., Sigal, A., Jenabian, M.-A., Nijs, P. et Wilson, D. (2014). Short communication: Lower baseline CD4 count is associated with a greater propensity toward virological failure in a cohort of South African HIV patients. AIDS Research and Human Retroviruses, 30(6), 531–534. http://dx.doi.org/10.1089/AID.2014.0011.
  • Jenabian, M.-A., Patel, M., Kema, I., et al. (2014). Soluble CD40-ligand (sCD40L, sCD154) plays an immunosuppressive role via regulatory T cell expansion in HIV infection. Clinical and Experimental Immunology, 178(1), 102–111. http://dx.doi.org/10.1111/cei.12396.
  • Costiniuk, C.T. et Jenabian, M.-A. (2014). The lungs as anatomical reservoirs of HIV infection. Reviews in Medical Virology, 24(1), 35–54. http://dx.doi.org/10.1002/rmv.1772.
  • Lebouché, B., Jenabian, M.-A., Singer, J., et al. (2014). The role of extended-release niacin on immune activation and neurocognition in HIV-infected patients treated with antiretroviral therapy – CTN PT006: study protocol for a randomized controlled trial. Trials, 15(390). http://dx.doi.org/10.1186/1745-6215-15-390.
  • Moussa, S., Jenabian, M.-A., Gody, J.C., et al. (2013). Adaptive HIV-specific B cell-derived humoral immune defenses of the intestinal mucosa in children exposed to HIV via breast-feeding. PLoS One, 8(5). http://dx.doi.org/10.1371/journal.pone.0063408.
  • Jenabian, M.-A., Patel, M., Kema, I., et al. (2013). Distinct tryptophan catabolism and Th17/Treg balance in HIV progressors and elite controllers. PLoS One, 8(10). http://dx.doi.org/10.1371/journal.pone.0078146.
  • Koyalta, D., Jenabian, M.-A., Djouater, B., et al. (2013). Field evaluation in Chad of community usage of CD4 T lymphocyte counting by alternative single-platform flow cytometry. BMC Health Services Research, 13(373). http://dx.doi.org/10.1186/1472-6963-13-373.
  • Jenabian, M.-A., Nicolette, C.A., Tcherepanova, I.Y., Debenedette, M.A., Gilmore, N. et Routy, J.-P. (2013). Impact of autologous dendritic cell-based immunotherapy (AGS-004) on B- and T-cell subset changes and immune activation in HIV-infected patients receiving antiretroviral therapy. Journal of Acquired Immune Deficiency Syndromes, 64(4), 345–350. http://dx.doi.org/10.1097/QAI.0b013e3182a4b9ad.
  • Jenabian, M.-A., Seddiki, N., Yatim, A., et al. (2013). Regulatory T cells negatively affect IL-2 production of effector T cells through CD39/adenosine pathway in HIV infection. PLoS Pathogens, 9(4). http://dx.doi.org/10.1371/journal.ppat.1003319.
  • Koyalta, D., Jenabian, M.-A., Nadjiouroum, N., et al. (2013). Single-platform, volumetric, CD45-assisted pan-leucogating flow cytometry for CD4 T lymphocytes monitoring of HIV infection according to the WHO recommendations for resource-constrained settings. BMC Research Notes, 6(169). http://dx.doi.org/10.1186/1756-0500-6-169.
  • Bernier, A., Cleret-Buhot, A., Zhang, Y., et al. (2013). Transcriptional profiling reveals molecular signatures associated with HIV permissiveness in Th1Th17 cells and identifies peroxisome proliferator-activated receptor gamma as an intrinsic negative regulator of viral replication. Retrovirology, 10(160). http://dx.doi.org/10.1186/1742-4690-10-160.
  • Jenabian, M.-A., Ancuta, P., Gilmore, N. et Routy, J.-P. (2012). Regulatory T cells in HIV infection: can immunotherapy regulate the regulator? Clinical and Developmental Immunology, 2012, Article ID 908314. http://dx.doi.org/10.1155/2012/908314.
  • Saidi, H., Jenabian, M.-A. et Belec, L. (2012). Understanding factors that modulate HIV infection at the female genital tract mucosae for the rationale design of microbicides. AIDS Research and Human Retroviruses, 28(11), 1485–1497. http://dx.doi.org/10.1089/AID.2012.0049.
  • Nikolova, M., Carriere, M., Jenabian, M.-A., et al. (2011). CD39/adenosine pathway is involved in AIDS progression. PLoS Pathogens, 7(7). http://dx.doi.org/10.1371/journal.ppat.1002110.
  • Belec, L., Jenabian, M.-A., Charpentier, C. et Saidi, H. (2011). Combinatorial prevention of HIV transmission in women: the case for a vaginal microbicide. Future Microbiology, 6(7), 731–737. http://dx.doi.org/10.2217/fmb.11.64.
  • Charpentier, C., Koyalta, D., Ndinaromtan, M., et al. (2011). Distribution of HIV-1 and HSV-2 epidemics in Chad revealing HSV-2 hot-spot in regions of high-risk HIV spread. Journal of Infection in Developing Countries, 5(1), 64–67. http://dx.doi.org/10.3855/jidc.1054.
  • Charpentier, C., Jenabian, M.-A., Piketty, C., et al. (2011). Dynamics of enfuvirtide resistance mutations in enfuvirtide-experienced patients remaining in virological failure under salvage therapy. Scandinavian Journal of Infectious Diseases, 43(5), 373–379. http://dx.doi.org/10.3109/00365548.2011.552520.
  • Auvert, B., Jenabian, M.-A., Saidi, H., Lissouba, P. et Belec, L. (2011). Partial inactivation of CCR5- and CXCR4- tropic HIV-1 by human urine. Archives of Virology, 156(12), 2181–2186. http://dx.doi.org/10.1007/s00705-011-1114-9.
  • Jenabian, M.-A., Saidi, H., Charpentier, C., et al. (2010). Differential activity of candidate microbicides against early steps of HIV-1 infection upon complement virus opsonization. AIDS Research and Therapy, 7(16). http://dx.doi.org/10.1186/1742-6405-7-16.
  • Jenabian, M.-A., Auvert, B., Saidi, H., Lissouba, P., Matta, M. et Belec, L. (2010). Potent in vitro inactivation of both free and cell-associated CCR5- and CXCR4-tropic HIV-1 by common commercial soap bars from South Africa. Journal of Acquired Immune Deficiency Syndromes, 54(4), 340–342. http://dx.doi.org/10.1097/QAI.0b013e3181e3dbf6.
  • Metlas, R.M., Srdic, T.V., Jenabian, M.-A., et al. (2009). Immunoglobulin G-reactive antibodies from sera of healthy individuals enriched in IgG2--therapeutic potential in HIV-1 infection. Current HIV Research, 7(4), 378–383. http://dx.doi.org/10.2174/157016209788680516.
  • Jenabian, M.-A., Saidi, H., Charpentier, C., et al. (2009). In vitro synergistic activity against CCR5-tropic HIV-1 with combinations of potential candidate microbicide molecules HHA, KRV2110 and enfuvirtide (T20). The Journal of Antimicrobial Chemotherapy, 64(6), 1192–1195. http://dx.doi.org/10.1093/jac/dkp380.
  • Eslahpazir, J., Jenabian, M.-A., Bouhlal, H., et al. (2008). Infection of macrophages and dendritic cells with primary R5-tropic human immunodeficiency virus type 1 inhibited by natural polyreactive anti-CCR5 antibodies purified from cervicovaginal secretions. Clinical and Vaccine Immunology (CVI), 15(5), 872–884. http://dx.doi.org/10.1128/CVI.00463-07.
  • Saidi, H., Jenabian, M.-A., Gombert, B., Charpentier, C., Mannarini, A. et Belec, L. (2008). Pre-clinical development as microbicide of zinc tetra-ascorbo-camphorate, a novel terpenoid derivative: potent in vitro inhibitory activity against both R5- and. AIDS Research and Therapy, 5(10). http://dx.doi.org/10.1186/1742-6405-5-10.
  • Saidi, H., Nasreddine, N., Jenabian, M.-A., et al. (2007). Differential in vitro inhibitory activity against HIV-1 of alpha-(1-3)- and alpha-(1-6)-D-mannose specific plant lectins: implication for microbicide development. Journal of Translational Medicine, 5(28). http://dx.doi.org/10.1186/1479-5876-5-28.

Intérêts de recherche

Français

L’infection chronique par le VIH est caractérisée par la persistance virale, l’activation immunitaire ainsi que la dysfonction et la déplétion des lymphocytes T CD4. La thérapie antirétrovirale a amélioré globalement la santé et la défense immunitaire des personnes vivant avec le VIH. Cependant, la fonction des cellules immunitaires qui contrôlent la réplication du VIH reste altérée. Les cellules T régulatrices (Tregs) sont une sous-population de lymphocytes T CD4, et possèdent des fonctions immunosuppressives. L’infection au VIH est associée à une augmentation de l’activation et de nombre des Tregs. Cependant, les mécanismes de ces perturbations sont mal définis. En outre, le rôle bénéfique ou délétère des Tregs dans l’infection au VIH reste controversé. Notre programme de recherche comporte la plasticitéet la fonctiondes Tregs dans l’infection au VIH et de leurrôle dans la progressionde la maladie.

English

Chronic HIV infection is characterized by persistent immune activation, dysfunction of antigen-specific T-cells and depletion of CD4 T-cells. Among CD4 T-cell subsets, regulatory T-cells (Tregs) are immunosuppressive cells which play a pivotal role in the control of immune tolerance and autoimmune diseases as well as in the limitation of immune activation and T-cell function in cancer or chronic viral infections. HIV infection is associated with an increase in Treg activation and frequency. However, the mechanisms by which these perturbations occur are unclear. In addition, whether Tregs play a beneficial or detrimental role in HIV infection remains controversial as Tregs can suppress HIV-specific responses and, conversely, can have a beneficial role by reducing deleterious immune activation. This dual role clearly justifies the need for further exploration of Tregs in the context of HIV infection. Given the key role of Tregs in chronic viral infections, we focus on a comprehensive understanding of the plasticity and function of Tregs and their role in disease progression and anti-HIV immunity.

Département des sciences biologiques

Le Département des sciences biologiques de l’UQAM est l’un des départements les plus dynamiques au Canada, profitant d’un des plus haut taux de subventions de recherche. La plupart de ses chercheurs sont regroupés au sein d’équipes de recherche de pointe en écologie, santé environnementale et toxicologie, et biotechnologies.

Coordonnées

Département des sciences biologiques
Local SB-R860
141, Avenue du Président-Kennedy
Montréal (Québec) H2X 1Y4